top of page
  • Facebook
  • Instagram
  • Youtube

探索刮痧療法:古代療法的當代觀點

expand

Free PMC article

Copyright: © 2021 Journal of Family Medicine and Primary Care.


References

  1. World Health Organization. WHO Traditional Medicine Strategy 2014–2023. [Last accessed on 2021 Mar 27]. http://apps.who.int/iris/bitstream/10665/92455/1/9789241506090eng.pdf.

  2. Nebhinani M, Saini SK. Leveraging role of non-physician health workers in prevention and control of non-communicable diseases in India: Enablers and challenges. J Family Med Prim Care. 2021;10:595–600. – PMC – PubMed

  3. Chung VCH, Wong CHL, Zhong CCW, Tjioe YY, Leung TH, Griffiths SM. Traditional and complementary medicine for promoting health ageing in WHO Western pacific region: Policy implications from utilization pattern and current evidence. Integr Med Res. 2021;10:100469. – PMC – PubMed

  4. Nielsen A, Knoblauch NTM, Dobos GJ, Michalsen A, Kaptchuk TJ. The effect of Gua Sha treatment on the microcirculation of surface tissue: A pilot study in healthy subjects. Explore. 2007;3:456–66. – PubMed

  5. Morgan L. Nitric oxide: A challenge to chiropractic. J Can Chiropr Assoc. 2000;44:40–8.

  6. Kakish R. A strigil from Roman Jordan: Evidence for personal care: Case study. MAA. 2015;15:63–70.

  7. Cheatham SW, Lee M, Cain M, Baker R. The efficacy of instrument assisted soft tissue mobilization: A systemic review. J Can Chiropr Assoc. 2016;60:200–11. – PMC – PubMed

  8. Lauche R, Wübbeling K, Lüdtke R, Cramer H, Choi KE, Rampp T, et al. Randomized controlled pilot study: Pain intensity and pressure pain thresholds in patients with neck and low back pain before and after traditional East Asian “gua sha” therapy. Am J Chin Med. 2012;40:905–17. – PubMed

  9. Mehta P, Dhapte V. Cupping therapy: A prudent remedy for a plethora of medical ailments. J Tradit Complement Med. 2015;5:127–34. – PMC – PubMed

  10. Braun M, Schwickert M, Nielsen A, Brunnhuber S. Effectiveness of traditional Chinese “gua sha” therapy in patients with chronic neck pain: A randomized controlled trial. Pain Med. 2011;12:362–9. – PubMed

  11. Chen T, Liu N, Liu J, Zhang X, Huang Z, Zang Y, et al. Gua Sha, a press-stroke treatment of the skin, boosts the immune response to intradermal vaccination. Peer J. 2016;4:e2451. – PMC – PubMed

  12. Cao S, Zheng M, Hua Y, Chen G, Keep RF, Xi G. Hematoma changes during clot resolution after experimental intracerebral hemorrhage. Stroke. 2016;47:1626–31. – PMC – PubMed

  13. Epperla N, Mazza JJ, Yale SH. A review of clinical signs related to ecchymosis. WMJ. 2015;114:61–5. – PubMed

  14. Regino WO, Velasco H, Sandoval H. The protective role of bilirubin in human beings. Rev Col Gastroenterol. 2009;24:293–301.

  15. Ryter SW, Choi AM. Heme oxygenase-1/carbon monoxide. Am J Respir Cell Mol Biol. 2009;41:251–60. – PMC – PubMed

  16. Nitti M, Furfaro AL, Mann GE. Heme oxygenase dependent bilirubin generation in vascular cells: A role in preventing endothelial dysfunction in local tissue microenvironment? Front Physiol. 2020;11:23. – PMC – PubMed

  17. Chen TM, Li J, Liu L, Fan L, Li XY, Wang YT, et al. Effects of heme oxygenase-1 upregulation on blood pressure and cardiac function in an animal model of hypertensive myocardial infarction. Int J Mol Sci. 2013;14:2684–706. – PMC – PubMed

  18. Naito Y, Takagi T, Higashimura Y. Heme oxygenase-1 and anti-inflammatory M2 macrophages. Arch Biochem Biophys. 2014;564:83–8. – PubMed

  19. Duvigneau J, Esterbauer H, Kozlov AV. Role of heme oxygenase as a modulator of heme-mediated pathway. Antioxidants (Basel) 2019;8:475. – PMC – PubMed

  20. Jansen T, Daiber A. Direct antioxidant properties of bilirubin and biliverdin. Is there a role for biliverdin reductase? Front Pharmacol. 2012;3:30. – PMC – PubMed

  21. Tsai MT, Tarng DC. Beyond a measure of liver function-Bilirubin acts as a potential cardiovascular protector in chronic kidney disease patients. Int J Mol Sci. 2019;20:117. – PMC – PubMed

  22. Watchko JF. Kernicterus and the molecular mechanisms of bilirubin-induced CNS injury in newborns. Neuromolecular Med. 2006;8:513–29. – PubMed

  23. Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol. 2010;50:323–54. – PubMed

  24. Ogun AS, Adeyinka A. Biochemistry, transferrin. StatPearls. Treasure Island, FL: StatPearls Publishing; 2018.

  25. Kim HP, Ryter SW, Choi AM. CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol. 2006;46:411–49. – PubMed

  26. Sheikh SZ, Hegazi RA, Kobayashi T, Onyiah JC, Russo SM, MatsuoKa K, et al. An anti-inflammatory role for carbon monoxide and heme oxygenase-1 in chronic Th2-mediated murine colitis. J Immunol. 2011;186:5506–13. – PMC – PubMed

  27. Morse D, Pischke SE, Zhou Z, Davis RJ, Flavell RA, Loop T, et al. Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J Biol Chem. 2003;278:36993–8. – PubMed

  28. Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15:252–9. – PubMed

  29. Cals-Grierson MM, Ormerod AD. Nitric oxide function in the skin. Nitric Oxide. 2004;10:179–93. – PubMed

  30. Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45:27–37. – PMC – PubMed

  31. Cao J, Inoue K, Li X, Drummond G, Abraham NG. Physiological significance of heme oxygenase in hypertension. Int J Biochem Cell Biol. 2008;41:1025–33. – PMC – PubMed

  32. Paine A, Eiz-Vesper B, Blasczyk R, Immenschuh S. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem Pharmacol. 2010;80:1895–903. – PubMed

  33. Yang M, Zhang H, Yue R, Shi Q, Bian Y. Gua Sha attenuates thermal hyperalgesia and decreases proinflammatory cytokine expression in serum in rats with lumbar disc herniation induced by autologous nucleus pulposus. J Trad Chin Med. 2018;38:698–704. – PubMed

  34. Tsuda M. Microglia in the spinal cord and neuropathic pain. J Diabetes Investig. 2016;7:17–26. – PMC – PubMed

  35. Wu HY, Tang XQ, Mao XF, Wang YX. Autocrine interleukin-10 mediates glucagon-like peptide-1 receptor-induced spinal microglial β-endorphin expression. J Neurosci. 2017;37:11701–14. – PMC – PubMed

  36. Nascimento CGO, Branco LGS. Antinociception synergy between the peripheral and spinal sites of the heme oxygenase-carbon monoxide pathway. Braz J Med Biol Res. 2009;42:141–7. – PubMed

  37. Kwong KK, Kloetzer L, Wong KK, Ren JQ, Kuo B, Jiang Y, et al. Bioluminescence imaging of heme oxygenase-1 upregulation in the Gua Sha procedure. J Vis Exp. 2009:1385. – PMC – PubMed

  38. Kidd BL, Urban LA. Mechanisms of inflammatory pain. Br J Anaesth. 2001;87:3–11. – PubMed

  39. Cunha FQ, Moncada S, Liew FY. Interleukin-10 (IL-10) inhibits the induction of nitric oxide synthase by interferon-γ in murine macrophages. Biochem Biophys Res Commun. 1992;182:1155–9. – PubMed

  40. Hervera A, Leánez S, Negrete R, Motterlini R, Pol O. Carbon monoxide reduces neuropathic pain and spinal microglial activation by inhibiting nitric oxide synthesis in mice. PLoS One. 2012;7:e43693. – PMC – PubMed

  41. Hamza M, Wang XM, Wu T, Brahim JS, Rowan JS, Dionne RA. Nitric oxide is negatively correlated to pain during acute inflammation. Mol Pain. 2010;6:55. – PMC – PubMed

  42. Burke T. Nitric oxide series, part seven: Nitric oxide (NO) and relief of pain. 2009. [[Last accessed on 2020 Sep 15]]. Available from: http://www.diabetesincontrol.com/nitric-oxide-series-part-sevennitric-ox…

  43. Cury Y, Picolo G, Gutierrez VP, Ferreira SH. Pain and analgesia: The dual effect of nitric oxide in the nociceptive system. Nitric Oxide. 2011;25:243–54. – PubMed

  44. Ropero Peláez FJ, Taniguchi S. The gate theory of pain revisited: Modeling different pain conditions with a parsimonious neurocomputational model. Neural Plast 2016. 2016 4131395. – PMC – 

bottom of page